
H2O.ai
Machine Intelligence

Fast, Scalable In-Memory Machine and Deep Learning
For Smarter Applications

Bits of Advice
For the VM Writer

Cliff Click

H2O.ai
Machine Intelligence

Who Am I?

Cliff Click
CTO, Co-Founder H2O.ai
cliffc@h2o.ai

40 yrs coding
35 yrs building compilers
30 yrs distributed computation
20 yrs OS, device drivers, HPC, HotSpot
10 yrs Low-latency GC, custom java hardware,

 NonBlockingHashMap
20 patents, dozens of papers
100s of public talks

PhD Computer Science
1995 Rice University
HotSpot JVM Server Compiler
“showed the world JITing is possible”

H2O.ai
Machine Intelligence

Some History of HotSpot
● HotSpot started as a Self VM ported to Java

– Simple GC, simple JIT, single-threaded, X86 only
● I've been working on HotSpot for ~20 yrs now

● Watched HotSpot become 'thread-robust'

● Many ports: X86, Sparc, IA64, X86-64, MIPS, Azul

● Pick up 2 new compilers (C1 & C2, -client & -server)

● Pick up many new GC's (serial, train, parallel, CMS, G1,
Azul's Pauseless)

● Other Cool Stuff: reflection as bytecodes, thin locks, JMM,
JNI, JVM{DI,TI,PI},

H2O.ai
Machine Intelligence

Nature of This Talk
● Much hard experience learned building HotSpot

– Too much info for one talk!
● Many topics are crucial for

– Ultimate speed, power, or footprint

– Engineering complexity & cost
● Interlock badly, in non-obvious ways

● I'm gonna breeze through! (limits of time)

– Happy to stop for questions

– ASK: because if your confused,
 so is the next person

H2O.ai
Machine Intelligence

Agenda

● Some Choices To Make

● Native Calls – a Deep Dive

● Things that Worked Well

● Hard Things but Worth Doing

● Things I Won't Do Again

● Q&A

(if time, A Deep Dive into Code Unloading)

H2O.ai
Machine Intelligence

VMs are Big Complex Beasties

● Or Really Really Small (e.g., Squawk, OOVM)

● Depends on the Feature Set

● Many features interact in Bad Ways

– Usually interactions not obvious
● I went the Big Desktop/Server route

– Very different choices from the cell-phone guys

– Must solve a different set of problems
● I suspect most of this applies to .Net as well

H2O.ai
Machine Intelligence

• Portable or not
─ Native code vs JIT'd code

─ Calling conventions, Endianess

─ Threads, POSIX, stacks

• Footprint

─ Embedded (1G), desktop (32G+), server (16G-256G)

• X86 vs RISC (ARM? GPU? DSP?)

• JIT or Interpret (or no Interpreter!)

• Multi-threaded
─ Cooperative vs preemption

• Multi-CPU

Some Choices to make...

H2O.ai
Machine Intelligence

• Interpreter
• Simple, software only

─ Pure C

─ GCC label vars (about 2x faster than pure C)

─ Pure ASM (about 2x faster again)

• Hardware support (ARM jazelle, pico-Java?)

• Fancy: inline & schedule dispatch

─ Seen at least 2 different ways to slice this

• Requires stack oriented layout, bad for JITs

• or none at all...

Interpreter Choices...

H2O.ai
Machine Intelligence

• JIT
─ None? (gives up peak performance)

─ stage0, template style?

─ stage1, light optimization, linear-scan allocator?

─ stage2, all the optimizations, graph-coloring?

• Portable or targeted (usual X86 + Vendor)?

• Intercalls with native?

• Mixed-mode with Interpreter?

─ Also messes with calling convention

• Class loading vs inlining non-final methods?

Some JIT choices to make...

H2O.ai
Machine Intelligence

More JIT choices to make...

• Stage-0 JIT + No Interpreter

• Template generation, very fast low quality code

• No funny stack layouts

• Easy calling conventions for all

• Still slower than just interpreting run-once code

• Lots of run-once code at startup

• Lots of bulky code to startup
─ Big footprint

─ Can throw away & regenerate

H2O.ai
Machine Intelligence

Some GC choices to make...

• GC
─ Simple? (single generation, StopTheWorld?)

─ Fast? (Throughput? Low pause?)

─ Exact? (allows moving objects, compaction, de-frag, bump
pointer allocation)

─ Conservative? (No need to track all objects)

─ Tried & true? (e.g. Mark/Sweep)

─ Fancy new algorithm?

• Parallel? (really hard!)

• Concurrent? (really really hard!)

• Both? (really4 hard!)

H2O.ai
Machine Intelligence

More GC choices...

● Stop-Anywhere vs Safepoints

● Stop-Anywhere
– OOP Maps at each PC? (bulky data)

– Interpret instructions? (hard/slow on X86)

– Fixed OOP registers & stack areas? (bad register usage)

● Safepoints
– Cooperative? (polling costs?)

● Polling in software vs hardware?
– Preempt at wrong place?

– Roll forward vs step forward vs interpret?

H2O.ai
Machine Intelligence

Threading Issues

• Multi-threading costs
─ All operations no longer atomic

─ May be preempted inconveniently

─ Need locking (never needed it before!)

• Threads can block for I/O, or deadlock

• GC requires SP (& usually PC) for stack roots

• Hard to find the SP+PC of remote thread

─ Common problem of OS's

─ ! Very surprising to me, until I tried it !

─ Fails (w/low frequency) on many “robust” OSes!

─ Caught in page fault handler, nested in tlb handler, nested
in stack overflow handler nested in

H2O.ai
Machine Intelligence

Multiple CPU Issues

• Multi-CPUs?
─ Now need Atomic operations

─ Coherency, memory fences

─ Low-frequency data race bugs

• Need scale-able locks in JVM

─ Not just correctness locks

• Need scale-able locks for Java/JIT'd code

─ Spinning & retries

─ 'fair' locks under super high contention

• GC can be in-progress when a thread awakens

─ Threads now need to take a form of GC lock to run

H2O.ai
Machine Intelligence

64-bit Math Choices...

• Long (64bit int) math vs JIT
─ Major user is BigInteger package

─ Called by crypto routines

─ Called by web services everywhere

• BigInteger usage is as a 'pair of ints w/carry'

─ Lots of masking to high or low halves

─ Lots of shift-by-32

• Optimizes really well as a pair of ints

─ All those mask/shifts turn into simple register selection

─ Better code on 32-bit machines by far (X86!)

─ Almost tied with “good” 64b code on 64-bit machines

─ (add+addc vs add8)

addadd

addcaddc

H L H L

H2O.ai
Machine Intelligence

● Some Choices To Make

● Native Calls – a Deep Dive

● Things that Worked Well

● Hard Things but Worth Doing

● Things I Won't Do Again

● Q&A

(if time, A Deep Dive into Code Unloading)

Agenda

H2O.ai
Machine Intelligence

Native Calls: A Deep Dive

 save 64 # register window push
 mov i0,o0 # Move incoming arg
o0 holds live OOP at call
 call foo # The Native Call
 nop # (really fill delay slot)
 mov o0,i0 # Move outgoing arg
 return #
 restore # pop sparc window

● Ideally: simple call
– Only true for fixed application set

– Often holds true for cell phones, small embedded

● Reality: Too complex, wants own frame
● Example: native Object foo(double d);

H2O.ai
Machine Intelligence

The Argument Shuffle

● First problem: JIT and Native calling conventions
– Eg: SparcV8 passes float in int regs

– Java normally floats passed in float regs

– No Java varargs or prototype-less code

● Want fast argument shuffle
– Auto-generate asm shuffle code from sig

 std d0,[sp+64] # float args passed in int regs
 # 'this' pointer is in o0
 ldw [sp+64],o1 # misaligned, need 2 loads
 ldw [sp+68],o2 # double now in o1/o2

H2O.ai
Machine Intelligence

Handlizing OOP Arguments
● Cannot pass in OOPs to Native

– Lest GC be unable to find them

– (only for moving collector)

– Handlize OOPs – part of arg shuffle code

– Need an OOP-map as well: [sp+72] live across call
 set 0,o0 # assume null arg
 beq i0,skip # handle of null is null
 stw i0,[sp+72] # handlize 'this'
 add sp,72,o0 # ptr to 'this' passed in o0
skip:

● Reverse for returning an OOP after the call
 beq o0,is_null
 ldw [o0],o0 # de-handlize return value
is_null:

H2O.ai
Machine Intelligence

Synchronized Native

● May need locking, i.e. synchronized keyword
 ldw [i0+0],l1 # Load 'this' header word
 or l1,2,l2 # set locked-bit
 stw l2,[sp+76] # save header on stack
 cas [i0],l1,l2 # Attempt to fast-lock
 cmp l1,l2 # success or fail
 bne slow_lock # CAS failed? Recursive lock?
not shown: inline recursive-lock handling

Both [sp+72] and i0 hold a live OOP across call
[sp+76] holds 'displaced header' – needed for inflation
 call foo # The Native Call
 nop # (really: fill in delay slot)

 cas [i0],l2,l1 # Attempt to fast-unlock
 cmp l1,l2 #
 bne slow_unlock # (awake waiting threads)

H2O.ai
Machine Intelligence

Allowing Stack Crawls

● Next problem: Native code may block
– We must allow a GC (if multi-threaded)

– But GC needs SP+PC to crawl stack

– Which portable OS + native compiler won't tell us

● So store SP/PC before calling native
– Storing SP is also trigger that allows GC

 setlo #ret_pc,l0
 sethi #ret_pc,l0 # set 32-bit PC before allow GC
 stw l0,[g7+&pc] # Rely on Sparc TSO here (IA64!)
 stw sp,[g7+&sp] # Enable GC from here on
 call foo # The Native Call!!!
 nop # (really fill delay slot)

H2O.ai
Machine Intelligence

Returning while GC-in-Progress

● Next: Native code returns while GC active
– Must block until GC completes

– No good to spin (eats CPU)

● Similar to 'lock acquire'
● Requires real Atomic operation
 setlo #ret_pc,l0
 sethi #ret_pc,l0 # set 32-bit PC before allow GC
 stw l0,[g7+&pc] # Rely on Sparc TSO here (IA64!)
 stw sp,[g7+&sp] # Enable GC from here on
 call foo # The Native Call!!!
 nop # (really fill delay slot)
ret_pc: add g7+&sp,l0 # CAS does not take an offset
 cas g0,sp,[l0] # if SP still there, store 0 to disable gc
 bne gc_in_progress

H2O.ai
Machine Intelligence

Odds-N-Ends

 ldw [g7+&gjni_sp],l3
 stw g0,[l3+&top]
....
 call foo
 nop # delay slot
 stw g0,[l3+&top]

● Need JNIEnv* argument, really offset from thread

● Reset temp handles before and after

● Profiling tags (optional)

JNIEnv* is 1st arg, shuffle others to o1,o2,etc...
 add g7,&jnienv_offset,o0

H2O.ai
Machine Intelligence

A Sample Native Call
 save 64 # register window push
 add g7,&jnienv_offset,o0 # JNIEnv* in o0
 set 0,o1 # assume null arg
 beq i0,skip # handle of null is null
 stw i0,[sp+72] # handlize 'this'
 add sp,72,o1 # ptr to 'this' passed in o1
skip:
 std d0,[sp+64] # float args passed in int regs
 ldd [sp+64],o2 # double now in o2/o3
 setlo #ret_pc,l0
 sethi #ret_pc,l0 # set 32-bit PC before allow GC
 stw l0,[g7+&pc] # Rely on Sparc TSO here (IA64!)
 stw sp,[g7+&sp] # Enable GC from here on
 call foo # The Native Call
ret_pc: add g7+&sp,l0 # CAS does not take an offset
 cas 0,sp,[l0] # if SP still there, store 0 to disable gc
 bne gc_in_progress
 set 0,i0 # assume null result
 beq o0,is_null
 ldw [o0],i0 # de-handlize return value
is_null:
 return #
 restore # pop sparc window

The Call

} Stack crawl
GC lock

} GC unlock

} Handles,
GC-unsafe natives

} De-Handlize

} Arg-shuffle
JIT vs native convention

H2O.ai
Machine Intelligence

● Some Choices To Make

● Native Calls – a Deep Dive

● Things that Worked Well

● Hard Things but Worth Doing

● Things I Won't Do Again

● Q&A

(if time, A Deep Dive into Code Unloading)

Agenda

H2O.ai
Machine Intelligence

Safepoints, Preemption & Polling
● Safepoint notion

– Easy for Server compiler to track, optimize

– Good optimization

– Threads stop at 'convenient' spots

– Threads do many self-service tasks
● Self-stack is hot in local CPU cache

● Polling for Safepoints
– Software polling not so expensive

● Cooperative Preemption
– most stopped threads already Safepointed

H2O.ai
Machine Intelligence

Heavy weight JIT Compiler
• Heavy weight compiler

─ Needed for peak performance

─ Can be really heavyweight and still OK

─ Loop optimizations (unrolling, peeling, invariant motion)
─ Actually plenty cheap and payoff well

• C2's Graph IR

─ Very non-traditional

─ But very fast & light

─ And very easy to extend

• C2's Graph-Coloring Allocator

─ Robust in the face of over-inlining

H2O.ai
Machine Intelligence

Portable Stack Manipulation
● Portable stack crawling code

– Need SP & PC

– Need notion of 'next' frame, 'no more frames'
● Frame iterator

– Works for wide range of CPUs and OSs

● Less-portable bits:

– Flush register windows
● Must lazy flush & track flushing

– Two kinds of stack on IA64, Azul

● Frame adapters for mixing JIT, interpreter

– Custom asm bits for reorganizing call args

– Really cheap, once you figure it out

H2O.ai
Machine Intelligence

The Code Cache, Debugging
● CodeCache notion

– All code in same 4Gig space

– Only need a 32-bit PC everywhere

– All calls use 'cheap' local call

– Big savings on X86 (&Sparc, RISC) vs 'far' call

● BlahBlahBlah-ALot debugging flags
– SafepointALot, CompileALot, GCAlot, etc...

– Stress all sorts of interesting things

– Easy for QA to run big apps long time w/flags

– Catches zillions of bugs, usually quite easily

H2O.ai
Machine Intelligence

Thin Locks
● Thin-lock notion

– HotSpot's, Bacon-bits, whatever

– Key: single CAS on object word to own lock

– CAS on unlock hardly matters; it's all cache-hot now

● Actually, want a thinner-lock:
– Thread speculative 'owns' lock until contention

– No atomic ops, ever (until contention)

– Pain-in-neck to 'steal' to another thread

– BUT toooo many Java locks never ever contend

● JMM worked out nicely as well

H2O.ai
Machine Intelligence

● Some Choices To Make

● Native Calls – a Deep Dive

● Things that Worked Well

● Hard Things but Worth Doing

● Things I Won't Do Again

● Q&A

(if time, A Deep Dive into Code Unloading)

Agenda

H2O.ai
Machine Intelligence

Porting to Many CPUs+OSs

● Portable
– Sparc (windows, RISC)

– X86 (CISC, tiny register set)

– Both endianess

● System more robust for handling all flavors
– Requires better code discipline

– Separates out idea from implementation better

● No middle compilation tier
– HS has needed a middle tier for years

H2O.ai
Machine Intelligence

Deoptimization

● No runtime cost to inline non-finals
● No runtime cost if you DO override code

– Must recompile of course

● Must flip compiled frame into interpreted frame
● Not Rocket Science

– But darned tricky to get right

– Only HS does it

● Others pay a 'no-hoisting' cost at runtime

H2O.ai
Machine Intelligence

Self-Modifying Code
● Code Patching

– Inline-caches

– “Not-entrant” code
● Patch in the face of racing Java threads, of course

– Must be legit for Java threads to see partial patches

● Almost easy on RISC

– Still must do I-cache shoot-down

● Pain on X86

– Variable-size (does it fit?)

– Instructions span cache-lines

– No atomic update

H2O.ai
Machine Intelligence

HLL Assembler

● Hand ASM in HLL
– Turns out need lots of hand ASM

● Want tight integration to runtime & VM invariants
– External ASM doesn't provide this

● Fairly easy to make ASM 'look' like ASM
– But actually valid HLL code (C, Java)

– Which, when run, emits ASM to a buffer

– And proves invariants, and provides other support

H2O.ai
Machine Intelligence

64b Object Header

● Single word on 64-bit VM
● Large memory savings plus speed in caches
● Needs dense KlassID vs 64b KlassPtr
● Thread ID for locking, speculative locking
● HashCode – want all 32bits when hashing more

than a few billion objects

H2O.ai
Machine Intelligence

Dense Thread ID

● Align stacks on 2Mb boundary
– Stack overflow/underflow: TLB 4K page protection

– Protect whole stack for various GC asserts

● Mask SP to get Thread ptr; shift for Thread ID
– Plus Thread Local Storage for VM

● TID in Object headers for locking
● Thread ptr very common in core VM code

– Must be fast

H2O.ai
Machine Intelligence

Safepointing Single Threads

● Software polling of single TLS word
– 1-clock on X86, predicted branch, L1 cache hit load

● Set a bit to stop a thread at safepoint
● Thread does many self-service tasks

– Crawl self stack for GC roots, GC phase flip

– Install remote exception, or stack overflow

– Revoke biased lock

– Debugger hooks; stop/start/conditional breakpoints

– Clean inline caches

– Cooperative preemption at safepoint

H2O.ai
Machine Intelligence

● Some Choices To Make

● Native Calls – a Deep Dive

● Things that Worked Well

● Hard Things but Worth Doing

● Things I Won't Do Again

● Q&A

(if time, A Deep Dive into Code Unloading)

Agenda

H2O.ai
Machine Intelligence

Things I won't do again...
● Write a VM in C/C++

– Java plenty fast now

– Mixing OOPS in a non-GC language a total pain

– Forgetting 'this' is an OOP
● Across a GC-allowable call

– Roll-your-own malloc pointless now

● C2's BURS patterning-matching
– Harkens back to VAX days

– Never needed on RISC

– Not needed on X86 for a long time now

– Adds an extra indirection in the JIT engineering

H2O.ai
Machine Intelligence

Things I won't do again...
● Patch & roll-forward Safepoints

– Hideously complex

– Very heavy-weight to 'safepoint' a single thread

– Multiple OS suspend/resumes

– Patching non-trivial

– Required duplicate code
● And so required dup PC handling throughout VM

● Generic callee-save registers

– Real mess to crawl stacks and track

– X86 doesn't need them

– Register windows work fine, both variable and fixed

– Only PPC & ARM common+many regs+no windows

H2O.ai
Machine Intelligence

Things I won't do again...

● Adapter frames
– For intercalling JIT'd code and interpreter

– Contrast to 'frame adapters'

– These leave a frame on stack

– Extra frame screws up all kinds of stack crawls

– Occasionally end up with unbounded extra frames

● No adapter frames means: interpreter & JIT'd
code must agree on return value register

● Only an issue for SparcV8 long values

H2O.ai
Machine Intelligence

Things I won't do again...
● Constant OOPs in code

– Looks good on X86 as 32-bit immediate

– Split instructions on Sparc, PPC, other RISC

– Moving collector requires patching the constant
● Multi-instruction patch?

– Must patch with all threads stopped

– Requires Stop-The-World pause in GC

● Better answer: pay to load from table every time

– Easy to schedule around

– Concurrent GC

– Fewer instructions, especially for 64-bit VMs

– No patching, no tracking of where OOP is

H2O.ai
Machine Intelligence

Things I won't do again...

● Lock'd object header in stack
– Means no tracking recursion count

– Means total pain when inserting hashcode,

– or inflating lock due to contention,

– or moving during concurrent GC

H2O.ai
Machine Intelligence

● Some Choices To Make

● Native Calls – a Deep Dive

● Things that Worked Well

● Hard Things but Worth Doing

● Things I Won't Do Again

● Q&A

(if time, A Deep Dive into Code Unloading)

Agenda

H2O.ai
Machine Intelligence

Summary
● The need to run any code, including native
● Run it fast, well, defensively
● Handle extremes of threading, GC, code

volume
● ---- Be General Purpose ----
● Forces difficult tradeoffs
● Things that are cheap & easy

– when you own the whole stack

● Are hard when you don't!

H2O.ai
Machine Intelligence

Open Questions for a Big JVM

● Graph-coloring vs linear-scan allocator?
– I can argue strongly both ways

● 'Right size' for an object header?
– Azul HotSpot: 1 (64bit) word, not two

● Interpreter vs stage0 JIT?
– Tracing stage1 JIT vs Heavy-weight vs multi-tier

● OS Threads vs Roll-Your-Own (e.g. Green)?
● High-Throughput vs Low-Pause GC?

H2O.ai
Machine Intelligence

Fast, Scalable In-Memory Machine and Deep Learning
For Smarter Applications

Bits of Advice
- Deep Secrets

Cliff Click

H2O.ai
Machine Intelligence

Inline Caches

● Wonderful – for fixing a horrible problem
– Virtual calls: both very common and SLOW

● Horrible – for causing a wonderful? problem
● All major JVMs (Sun, IBM, BEA) do it
● “Makes Java as fast as C”
● Or at least, make virtual calls as cheap as static

– A key performance trick

H2O.ai
Machine Intelligence

vs Virtual Calls
● What's wrong with v-calls?
● OFF by default in C++
● ON by default in Java
● So Java sees a zillion more of 'em than C++
● And so MUST be fast or “Java is slow”
● Typical (good) implementation:

– LD / LD / JR

● Dependent loads (no OOO), so cost is:
– 3 + 3 + 25 = 31clks

– Actually 1st load probably misses in L1 cache 50%

H2O.ai
Machine Intelligence

A Tiny Fast Cache
● But – 95% of static v-calls are to Same Class 'this'

● Means jump to same target address
● Predict 'this' class with 1-entry cache
● On a hit, use static call – NOT jump-register
● Cost is:

– LD / (build class immediate) / CMP / TRAP / CALL

● cmp predicts nicely, OOO covers rest:
– Max(3,1 + 1) = 3

● Now 95% of v-calls nearly same cost as C calls!

H2O.ai
Machine Intelligence

But
● On prediction failure, patch code to Do It Right

– (that LD / LD / JR sequence)

● Actually, start with cache empty & patch to fill
– Target chosen lazily – important!

– First call fails prediction

– Patches to 1st caller's target

● Patching must be safe in presence of racing CPUs
– Always a multi-instruction patch

– CPUs can be pre-empted between any 2 instructions

– Sleep during patching, then awaken and...

– See any 'cut' of the patch sequence

H2O.ai
Machine Intelligence

Code patching
● Fairly easy to patch -

– Empty to static (no prediction needed)

– Empty to predicted (install key/value into cache)

– Predicted to full-lookup

● Impossible to patch:
– (predicted or full-lookup) to empty!

– Must guarantee no thread is mid-call!

● Without a full stop-all-threads at safepoints
– Or some other roll-forwards / roll-backwards scheme

– Very expensive

– So don't clean caches

H2O.ai
Machine Intelligence

Inline Caches
● Means inline caches hold on to busted predictions

– Until we bother to stop and clean

– Or a thread stumbles across it and fails prediction

● Means one piece of JIT'd code holds a pointer to
another – indefinitely!
– At any time a running CPU might load the address

– Keep it in his PC register

– Get context-switched out

– Wake up sometime later....

● Means I cannot trivially remove dead JIT'd code!

H2O.ai
Machine Intelligence

NMethods

● HotSpot jargon for “JIT'd code”
● Complex data structures
● Very heavy with multi-threaded issues

– Hence full of subtle bugs

● More than one active per top-level Java method
● Very complex lifetimes

– Constantly produced (as new classes loaded) so...

– Must be constantly culled as well

H2O.ai
Machine Intelligence

NMethods
● Generated code can be in active use

– CPUs are actively fetching instructions

– Might be OS hard-preempted at ANY point

– Live code in I$

● Return PCs active in frames for long times
– GC must find PCs to find NMethods to find OOP-Maps

● Code is patched
– Inline-caches are VERY common, VERY hot

– Direct calls from one NMethod to another

● Code contains OOPs
– GC is actively moving objects

H2O.ai
Machine Intelligence

NMethods - Data
● The Code

– And relocation info

● Class dependencies

– e.g. invalidate this code when a subclass of X is loaded

● Inline caches

– direct calls from one NMethod to another

● OOP-Maps at Safepoints

– OOPs in code – roots for GC, maybe changed

● Other info

– Deopt maps, exception handling tables, inlining info

H2O.ai
Machine Intelligence

NMethods - Lifetime

● Construction & Installation
● Publish
● Actively Used
● NotEntrant
● Deoptimized
● Zombie
● Flush

H2O.ai
Machine Intelligence

NMethods – Make & Installation

● During construction
– embedded OOPs must be kept alive

– NMethod can not do it

– Need “hand-off” with compiler

● Race during Install with invalidating class load
– Compiler has made assumptions about Classes

– If class gets loaded, must invalidate NMethod

● Maybe need frame adapters
– To map call signature from interpreter to JIT'd layout

H2O.ai
Machine Intelligence

NMethods – Publish

● Make a 'strong ref' from owning Method
● Other running threads can instantly find

– And start executing

– And instantly need GC info

● Must fence appropriately

H2O.ai
Machine Intelligence

NMethods – Active

● Running threads find via calls to owning Method
● Inline-caches directly reference
● PC register in CPUs directly reference
● Stack frame return PCs (hardware stacks!) ref
● GC info needed
● Deoptimization info needed
● Exception handling tables needed

H2O.ai
Machine Intelligence

NMethods – NotEntrant

● No new calls can be made
– But old calls are legit, can complete

● Happens when compiler makes poor (not
illegal) decisions
– And wants to try again after profiling

● Patch entry point with a trap
– Callers hit trap & fixup

– Generally fixup calling code to not call again and

– Find another way to execute

● All data remains alive

H2O.ai
Machine Intelligence

NMethods – Deoptimized

● No OLD calls either
– Class-loading makes existing calls illegal to

continue

● Wipe Code out with NOPs
● Existing nested calls run full speed till return

– And fall thru NOPs into a handler

● No more OOPs in code, no exception handlers
– No OOP-Maps, inline caches, dependency info

● But need deopt info (which may include OOPs)
● Inline caches, I$, CPU PCs still point here!

H2O.ai
Machine Intelligence

NMethods – Zombie

● No more pending Deoptimizations remain
– Generally found by GC at next full Safepoint

● But Inline-caches still point here
– So CPU PCs still point to 1st instruction

● Must sweep all existing NMethods
– Could be slow, megabytes of JIT'd code

– But done concurrently, parallel

● After sweep, must flush all I$'s
– Could be slow, impacts all running CPUs

H2O.ai
Machine Intelligence

NMethods – Flush

● Remove Code from CodeCache
● Reclaim all other datastructures
● It's Dead Jim, Finally!

	Slide 1
	Slide 2
	History
	Slide 4
	Agenda-Choices
	Complex
	Choices
	Choices-interp
	Choices-JIT
	Choices-JIT0
	Choices-GC
	Choices-Safepoints
	Choices-Threads
	Choices-CPUs
	Choices-Longs
	Agenda-Native
	Native
	ArgShuffle
	Handlize
	Locking
	SP+PC
	GC-lock
	misc
	Example
	Agenda-Well
	Safepoints
	C2
	StackCrawl
	CodeCache
	ThinLocks
	Agenda-Hard
	Ported
	deopt
	patching
	ASM
	Slide 36
	Slide 37
	Slide 38
	Agenda-Never
	C++
	RollForward
	Adapters
	oopsInCode
	LockWord
	Agenda-QA
	Summary
	BigQuestions
	Slide 48
	InlineCache
	VirtCall
	TinyCache
	But...
	CodePatch
	InlineCache2
	NMethod
	Code
	Data
	Lifetime
	Make&Install
	Publish
	Active
	NotEntrant
	Deopt
	Zombie
	Flush

